Pre-class Warm-up!!!

One of the following functions is a solution to the differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 x}
$$

Just by guessing what seems reasonable, which function do you think it probably is?
a. $y=\sin 3 x$
b. $y=1-3 x+2 x^{2}$
c. $y=\sin x e^{3 x}$
d. $y=\frac{1}{2} e^{3 x}$

Section 5.5: Non-homogeneous equations

We learn:

- how to find a particular solution to an equation $a _n y^{\wedge}(n)+\ldots+a _0 y=f(x)$
where $f(x)$ is a function made up of polynomials, exponentials and \sin , \cos
- the method of undetermined coefficients
- The method of variation of parameters

We know already:

- the general solution is then y_c $+y _p$ where
- y_p is a particular solution, and
- y_c is a solution to the corresponding homogeneous equation

Question like 5.5: 1-20
Find a particular solution to the equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 x}
$$

Solution: We guess a solution $y=A e^{3 x}$

$$
\begin{gathered}
y^{\prime}=3 A e^{3 x} \quad y^{\prime \prime}=9 A e^{3 x} \text { Subsititule } \\
(9 A-9 A+2 A) e^{3 x}=e^{3 x} \\
2 A=1 \\
A=\frac{1}{2} .
\end{gathered}
$$

Like questions 31-40
Solve the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 x}, \quad y(0)=2^{\frac{1}{2}}, \quad y^{\prime}(0)=4^{\frac{1}{2}}
$$

Solution. Step 1: find a particular solution y_p $=(1 / 2) e^{\wedge} 3 x$ Done!
Step 2: find a general complementary function

$$
y_{-} \mathrm{C}=\mathrm{A} y_{-} 1+\mathrm{B} y_{-} 2
$$

Step 3: Apply the initial conditions to $y=y _p+y _c$ to find A and B.

Step 2: solve the homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

Characteristic equation $r^{\wedge} 2-3 r+2=0$,

$$
(r-1)(r-2)=0, r=1 \text { or } 2 \quad y_{c}=A e^{x}+B e^{2 x}
$$

Step 3: Applymitial conditions to

$$
\begin{aligned}
& y=y_{p}+y_{c}=\frac{1}{2} e^{3 x}+A e^{x}+B e^{2 x} \\
& y(0)=\frac{1}{2}+A+B=2 \frac{1}{2} \\
& y^{\prime}=\frac{3}{2} e^{3 x}+A e^{x}+2 B e^{2 x}, y^{\prime}(0)=\frac{3}{2}=\frac{3}{2}+A+2 B \\
& A+B=2 \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& \quad=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad y=\frac{1}{2} e^{3 x}+e^{x}+e^{2 x}
\end{aligned}
$$

Question like 5.5: 1-20
How would you do:?
Find a particular solution to the equation

$$
\begin{array}{rlrl}
y^{\prime \prime}-3 y^{\prime}+2 y & =e^{3 x} & \operatorname{Tr} y & y=A e^{3 x} \\
& 2 x+3 x^{2} & y & =A+B x+C x^{2} \\
& \sin x & y & =A \sin x+B \cos x \\
x^{2} e^{3 x} & y & =A x^{2} e^{3 x}+B x e^{3 x}+C e^{3 x} \\
\sin x e^{3 x} & y & =A \sin x e^{3 x}+B \cos x e^{3 x} \\
x \sin x & y & =A x \sin x+B x \cos x \\
e^{x} & y & =A e^{x}
\end{array}
$$

What functions should we try to get a solution to the non-homogeneous equation?

Question like 5.5: 1-20
Find a particular solution to the equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}
$$

Attempt: Ing $y=A e^{x}, y^{\prime}=A e^{x}=y^{\prime \prime}$
Substitute: $\quad A e^{x}-3 A e^{x}+2 A e^{x}=e^{x}$

$$
\sigma=e^{x}
$$

Station: Try $y=A x e^{x} \underbrace{+B e^{x}}_{\text {not needed }}$ d

$$
\begin{aligned}
y^{\prime}=A\left(e^{x}+x e^{x}\right) \quad y^{\prime \prime} & =A e^{x}+A e^{x}+A x e^{x} \\
& =2 A e^{x}+A x e^{x}
\end{aligned}
$$

Substitute:

$$
\begin{aligned}
& 2 A e^{x}+A x e^{x}-3 A e^{x}-3 A x e^{x}+2 A x e^{x} \\
& =-A e^{x}=e^{x}
\end{aligned}
$$

Thus $A=-1$
$y=\sim x e^{x}$ is a particular solution

The problem init h tinging $y=A e^{x}$ is that e^{x} is a solution to the corresponding homogeneous equation, so we get 0 when we substitute it arb the leporide.
The answer is to thy $y=A x e^{x}$ instead. But what if both e^{x} and $x e^{x}$ are solutions of the homogeneous equation?

Pre-class Warm-up!!!
If we write $\cos 3 t-2 \sin 3 t=C \cos (\omega t-\alpha)$
what is $\tan \alpha$?
a. $-1 / 2$
b. 4
c. 2
d. -2
e None of the above.

What is C?
a. 5
b. $\sqrt{ } 5$
c. $\sqrt{3}$
d. -1
e. None of the above

Ow Friday March 29 This class will be held in Murphy Hall 130

Ow Monday April 1, I will teach inns class remotely, on Zoom, with a link I will send you.

The quiz tomorrow is on sections 4.7-5.4 4.7 is about abstract vector spaces.

Question like 5.5: 21-30
What is the appropriate form of a particular solution to the following equation?

$$
y^{(5)}+y^{(3)}=1+2 x+3 x^{2}
$$

Solution: char polynomial $r^{5}+r^{3}=r^{3}\left(r^{2}+1\right)$
has roots \mathcal{O} (3times), $\pm i$.
General solution: $A+B x+C x^{2}+D \cos t+E \sin t$ to the homogeneous equation
for a solution to $\ldots=1+2 x+3 x^{2}$ we tory

$$
y=A x^{3}+B x^{4}+C x^{5} \text {. Here } 5=2+3
$$

exp oof x^{2} times recto
Substitute: $C \cdot 120+6 A+24 B x+60 C x^{2}$

$$
=1+2 x+3 x^{2}
$$

$$
\begin{aligned}
& \text { Cociffof } x^{2}: 60 C=3, C=120 \\
& x: 24 B=2 \quad B=\frac{1}{12} \\
& 1: 6 A=-5 \quad A=-5 / 6
\end{aligned}
$$

$y=-\frac{5}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}$ is a particular $\begin{gathered}\text { solution. }\end{gathered}$

What about
$y^{(5)}+y^{(3)}=\sin x^{-b}$. a a solution of hoviog. eq. $x \sin x$ d. works b. doesn't work $e^{x} \sin x \quad A e^{x} \sin x+B e^{x} \cos x^{?}$?
To get a particular solution, we should x y
a. $A \sin x+B \cos x$
b. $A x \sin x+B x \cos x$
c. $A x^{2} \sin x+B x^{2} \cos x$
d. $A x \sin x+B x \cos x+C x^{2} \sin x+D x^{2} \cos x$
e. None of the above.

Question like 5.5, 47-56.
Use the method of variation of parameters to find a particular solution to the equation.
51. $y^{\prime \prime}+4 y=\cos 3 x$

Idea. Char poly is $r^{2}+4$, roots $\pm 2 i$
General soln for harry. eg: Acos $2 x+B \sin 2 x$
We try a particular solution of form
$y=u \cos 2 x+v \sin 2 x$ where u, v are functions of x
Calculate $y^{\prime}=u(-2 \sin 2 x)+v(2 \cos 2 x)$

$$
+u^{\prime} \cos 2 x+v^{\prime} \sin 2 x
$$

Idea: put $u^{\prime} \cos 2 x+v^{\prime} \sin 2 x=0$
Next $\begin{aligned} y^{\prime \prime} & =u(\quad)+r(\\ & +u^{\prime}(-2 \sin 2 x)+v^{\prime}(2 \cos \end{aligned}$

$$
\begin{aligned}
& =u(c v c \\
& +u^{\prime}(-2 \sin 2 x)+v^{\prime}(2 \cos 2 x)
\end{aligned}
$$

Substitute in $y^{\prime \prime}+4 y=\cos 3 x$. All terms disappear except for the terms in u^{\prime}, v^{\prime}
Get two equations for u^{\prime}, v^{\prime} Solve. Do $u=\int u^{\prime} \quad v=\rho^{\prime}$.

Question like 5.5, 47-56.

Use the method of variation of parameters to find a particular solution to the equation.
51. $y^{\prime \prime}+4 y=\cos 3 x$

Solution: We have solutions $\cos 2 x, \sin 2 x$ to $y^{\prime \prime}+4 y=0$.
Try for a solution $y=u \cos 2 x+v \sin 2 x$ where u, v are functions of x. Then
$y^{\prime}=-2 u \sin 2 x+2 v \cos 2 x+u^{\prime} \cos 2 x+v^{\prime} \sin 2 x$ It works if we put the pink terms

```
\mp@subsup{u}{}{\prime}}\operatorname{cos}2x+\mp@subsup{v}{}{\prime}\operatorname{sin}2x=
```

Next
$y^{\prime \prime}=-4 u \cos 2 x-4 v \sin 2 x-2 u^{\prime} \sin 2 x+2 v^{\prime} \cos 2 x$ Substitute in the original equation. Some cancellation takes place (no accident):

$$
y^{\prime \prime}+4 y=-2 u^{\prime} \sin 2 x+2 v^{\prime} \cos 2 x=\cos 3 x
$$

We get a system of linear equations for u^{\prime}, v^{\prime}

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos 2 x & \sin 2 x \\
-2 \sin 2 x & 2 \cos 2 x
\end{array}\right]\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\cos 3 x
\end{array}\right]} \\
& w(\cos 2 x, \sin 2 x) \\
& {\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
2 \cos 2 x & -\sin 2 x \\
2 \sin 2 x & \cos 2 x
\end{array}\right]\left[\begin{array}{l}
0 \\
\cos 3 x
\end{array}\right]} \\
& =\frac{1}{2}\left[\begin{array}{r}
-\sin 2 x \cos 3 x \\
\cos 2 x \cos 3 x
\end{array}\right] \\
& \begin{array}{l}
u=-\frac{1}{2} \int \sin 2 x \cos 3 x d x=-\frac{1}{2} \int(\sin 5 x-\sin x) d x \\
=\frac{1}{10} \cos 5 x-\frac{1}{2} \cos x \\
v=\frac{1}{2} \int \cos 2 x \cos 3 x d x=\frac{1}{2} \int(\cos 5 x+\cos x) d x \\
=\frac{1}{10} \sin 5 x+\frac{1}{2} \sin x \\
y
\end{array}=\left(\frac{1}{10} \cos 5 x-\frac{1}{2} \cos x\right) \cos 2 x+\left(\frac{1}{10} \sin 5 x+\frac{1}{2} \sin x\right) \sin 2 x
\end{aligned}
$$

Question:

What is the best form of function to try in solving $y^{\prime \prime}+y=x \sin x$?
a. $a x \sin x+b x \cos x$
b. $a x \sin x+b x \cos x+c \sin x+d \cos x$
c. $a x \sin x+b x \cos x+c x^{\wedge} 2 \sin x+d x \wedge 2 \cos x$
d. $a \sin x+b \cos x+c x^{\wedge} 2 \sin x+d x^{\wedge} 2 \cos x$
e. None of the above.

Note that $\sin x$ and $\cos x$ are solutions to $y^{\prime \prime}+y=0$.

Worked example:
Find a particular solution for

$$
y^{\prime \prime}+y=x \sin x
$$

Solution: observe $y _c=\sin x$ and

$$
y_{-} c=\cos x \text { solve } y^{\prime \prime}+y=0
$$

Try these cancel

$$
\begin{aligned}
y= & x^{2}(a \sin x+b \cos x)+x(c \sin x+d \cos x) \\
y^{\prime} & =x^{2}(a \cos x-b \sin x)+2 x(a \sin x+b \cos x) \\
& +x(c \cos x-d \sin x)+c \sin x+d \cos x \\
y^{\prime \prime} & =x^{2}(-a \sin x-b \cos x)+4 x(a \cos x-b \sin x) \\
& +2(a \sin x+b \cos x)+x(-c \sin x-d \cos x) \\
& +2(c \cos x-d \sin x) \\
y^{\prime \prime}+y & =4 x(a \cos x-b \sin x) \\
& +(2 c+2 b) \cos x+(2 a-2 d) \sin x \\
& =x \sin x
\end{aligned}
$$

Thus $-4 b=1 \quad a=0=d=2 c+2 b$

$$
\begin{aligned}
& b=-\frac{1}{4} \quad c=+\frac{1}{4} \\
& y_{p}=-\frac{1}{4} x^{2} \cos x+\frac{1}{4} x \sin x
\end{aligned}
$$

